Технологии дистанционного зондирования Земли (ДЗЗ) из космоса представляют собой незаменимый инструмент изучения и постоянного мониторинга планеты, помогающий эффективно управлять ее ресурсами. Системы радиолокационного ДЗЗ разрабатываются в центре, базирующемся в Поволжском государственном университете телекоммуникаций и информатики (ПГУТИ). О работе центра рассказал в интервью его руководитель, проректор вуза по научной работе и действительный член Российской Академии космонавтики им. К.Э.Циолковского, д.т.н., профессор Олег Горячкин.
- Какие задачи стоят перед Центром радиолокационного дистанционного зондирования Земли (ЦР ДЗЗ)?
- Центр ДЗЗ был создан с целью обеспечения государственных структур и частных компаний информацией, основанной на анализе спутниковых данных, полученных в ходе дистанционного зондирования Земли в радиодиапазоне. В задачи центра входят также собственно разработка новых методов и технологий радиолокационного ДЗЗ, улучшение качества анализа и дешифровки получаемой информации. Кроме того, это и обеспечение экспериментальными данными научных исследований, а также использование этих данных и методов в учебном процессе.
- В чем суть радиолокационного дистанционного зондирования земли? Где применяется эта технология?
- Сами технологии всем хорошо известны. Наверное, все знают, что в космосе на орбите Земли летает много космических аппаратов и спутников. Одни фотографируют земную поверхность в обычном диапазоне, передавая космические снимки высокой четкости, другие делают такие же снимки, только в радиодиапазоне.
Большая часть космических аппаратов с возможностью съемки в радиодиапазоне принадлежит Германии, США, Израилю, Италии, Китаю, Испании и Бразилии. К сожалению, среди этих стран пока нет России, но мы надеемся, что в будущем эта ситуация изменится.
До сегодняшнего момента наш центр был ориентирован на работу с данными иностранных спутников. У нас есть соответствующее программное обеспечение для обработки радиоснимков. Это собственное ПО, а также ПО российского производства. В 2009 году мы закупили его у АО "Ракурс" (один из признанных лидеров в области геоинформатики, цифровой фотограмметрии и дистанционного зондирования. Компания располагает собственными уникальными программными разработками, известными под торговой маркой PHOTOMOD. - Прим. ред.).
- В каком виде вы получаете информацию со спутника? В чем преимущества метода ДЗЗ в радиодиапазоне?
- Технология ДЗЗ в радиодиапазоне позволяет совершать съемку в любых условиях - ночью и днем в условиях облачности, дождя или снега. В радиодиапазоне это не является проблемой. Космический спутник передает сигнал - радиоголограмму. Он приходит в приемный пункт на Земле и дешифрует информацию. В частности, мы получали информацию у компании, расположенной в Германии. Тут радиоголограмма превращается в изображение и уже потом продается любым заинтересованным лицам. Для своих исследований мы покупали такую информацию просто как коммерческие потребители. Часть информации нам предоставили в рамках научного сотрудничества бесплатно.
- Снимки передают только изображение поверхности?
- Кроме самих снимков, радарная технология позволяет строить рельеф местности с точностью до трех-пяти метров. Это сопоставимо с лучшими оптическими системами. Добавьте к этому еще всепогодность и круглосуточность съемки.
Более того, радарные технологии позволяют измерять подвижность местности с точностью до миллиметра. Для этого берется базовая картинка рельефа и на нее накладывается еще одна. Разницу этих рельефов с точностью до миллиметров можно рассмотреть. Для отработки этих технологий мы используем специальные уголковые отражатели. Из космоса можно контролировать, насколько такой уголок "ходит" вместе с Землей. Такую информацию можно использовать для контроля состояния плотин, высотных домов, крупногабаритных сооружений.
- В чем именно состоит интерес Центра ДЗЗ при ПГУТИ к этой технологии?
- Наши исследования сегодня затрагивают технологии и методы дешифровки информации, передаваемой со спутников. Это очень трудоемкий и сложный процесс. Я сам занимаюсь этим всю свою жизнь. Я участвовал в создании первых советских космических радаров, первых российских цифровых радаров с высоким разрешением, установленных на самолетах. Много лет курировал разработку радаров, работая ведущим радарным инженером в ЦСКБ "Прогресс".
Если говорить о радарных системах, то они очень разные и зависят от того, в каком диапазоне частот работают. Приведу пример. Если взять снимок современного космического радара в сантиметровом диапазоне (просто картинку), то мы увидим рельеф, лес и деревья. Но если, например, танк заедет под дерево, то его уже не видно. Такая съемка отображает только верхнюю границу с воздуха. Поэтому многих интересуют радары других диапазонов, которые могут проникать не только через листву, но и желательно под землю.
- Есть ли выделенная частота, на которой вы можете работать?
- Да, есть разрешенная радиополоса, с которой мы работаем в диапазоне 145 МГц. Тут используются метровые волны, которые могут проникать и под землю, если не очень влажно. Но есть нюанс - итоговая картинка под землей и на земле сливается. Границу поверхности приходится определять по косвенным признакам. Для науки здесь много вопросов, их мы и пытаемся решить. В целом могу с уверенностью сказать, что мир стоит на пороге большого открытия, которое подтолкнет к массовому применению технологий радиовидения в быту, как это случилось в свое время со спутниковыми системами навигации "ГЛОНАСC" и GPS.
- Помимо дешифровки и обработки получаемой со спутника информации, пробовали ли вы применить свои разработки в других аспектах этой тематики?
- Мы пытались создавать собственные средства ДЗЗ различного вида, в том числе и космические. В 2010 году мы начали разработку экспериментального радара для проведения исследований. В состав аппаратуры входили бортовой передатчик и наземный комплекс приема обработки. Идея предполагала создание бистатической радиолокационной системы, когда из космоса на Землю направляются лучи в радиодиапазоне, а наземные средства собирают отраженные сигналы и по ним строят изображения. На разработку оборудования мы потратили около пяти лет. Наша аппаратура была запущена в 2015 году на спутнике "АИСТ-2Д", собранном АО РКЦ "Прогресс". К сожалению, передатчик радара не включился на орбите, и для экспериментов использовалась только наземная аппаратура.
- Как жаль! Удалось понять причину отсутствия сигнала? Проводились ли какие-то опытные испытания?
- Причину сложно установить. Конечно, мы проводили испытания на подобной аппаратуре в наземных условиях. Тогда радиолокационное изображение местности велось с движущегося автомобиля, на борту которого был установлен передатчик. Приемный пункт устанавливался где-то в стороне в виде мачты или приемной антенны. В таких условиях мы отработали технологию и одновременно получили собственные средства ДЗЗ.
- Расскажите, пожалуйста, еще о собственных разработках.
- Проведение тестовых испытаний космического радара подтолкнуло нас к созданию мобильного радиолокационного комплекса для использования при передвижении на автомобиле или вертолете, малой авиации. Для его тестирования мы выезжали на машине на какую-нибудь возвышенность и проводили исследования. Вся эта эпопея окончилась разработкой радарного комплекса для беспилотника. Над ним мы сейчас и работаем. Он в принципе уже собран и действует, проводится стадия летных испытаний, но в связи с запретом на полеты беспилотников процесс немного затормозился. Тут мы надеемся на поддержку губернатора Дмитрия Азарова - он обещал помочь.
- Как давно вы занимаетесь беспилотниками?
- С 2015 года мы работаем по этому направлению. В основном нас интересуют грузоподъемные беспилотники с массой более 15 кг, необходимые для переноса аппаратуры. Нужно их дорабатывать в плане устойчивости в полете и электромагнитной совместимости, так как на борт ставится довольно мощный передатчик. Беспилотник готов и оборудован всем необходимым, остались летные испытания.
- Можете ли вы рассчитывать на поддержку государства? Есть ли какие-то программы или проекты, позволяющие получить грант на разработку данного направления?
- Государство предоставляет довольно много возможностей для проектов, ориентированных на сферу массового потребления. Речь идет об инновационных проектах с идеей, в результате которой появится массовый продукт или на его основе начнется хозяйственная жизнь. На такие проекты государство выделяет огромные средства и усилия. Это понятно, так как позволяет запустить микроэкономику. Но наши проекты пока не ориентированы на массового потребителя.
- Удалось ли вам коммерциализировать вашу деятельность?
- Коммерциализация деятельности для нас никогда не была самоцелью - мы все-таки научная организация. А вот предоставить потенциальным потребителям доступ к прорывным технологиям и решить совместно с ними практическую задачу нам было интересно. Например, компания “СМАРТС”, будучи тогда еще оператором связи, высказала заинтересованность в оптимальном размещении своих базовых станций для обеспечения наилучшего покрытия сети. Для этого компания запросила информацию с коррекцией рельефа, где было бы видно, где построили новые здания, где срубили деревья. Было еще несколько обращений от телекоммуникационных компаний, для которых мы выполняли похожую работу, делали высотные модели Самары и Казани.
Кроме того, результаты метода дистанционного зондирования часто применяются в сельском хозяйстве, геодезии, картографировании, мониторинге поверхности суши и водной поверхности, а также слоев атмосферы.
- Много ли подобных центров в России?
- Таких центров, специализирующихся на радиолокационных технологиях, как у нас, немного. Обычно это приемные пункты спутниковой информации оптического диапазона. Такой приемный пункт есть в Самарском университете. При этом они располагают возможностью приема сигнала непосредственно с канадского радиолокационного спутника RadarSat. Научный центр оперативного мониторинга Земли (НЦОМЗ, входит в госкорпорацию Роскосмос) располагает информацией сразу с нескольких отечественных спутников. Четыре приемных центра - в Москве, Иркутске, Магадане и Мегионе - есть у группы компаний "СКАНЭКС", занимающейся не только обработкой изображений, но и разработкой, производством и внедрением технологий для работы с получаемыми изображениями Земли из космоса и оперативного доступа к ним.
Последние комментарии
Для выполнения авиасельхозработ необходим поршневой двигатель как наиболее приёмистый по сравнению с газотурбинным. Если конструкторы с "Прогресса" посмотрят самолёт Копейкина , который заменил двигатель М601 на поршневой отечественный двигатель М-14 на крыле от Л-410, то вариант "Рысачка" с М-14 будет отвечать политике импортозамещения.
Врать не хорошо. Никто никого не заставлял. И ничем не угрожали. Подписи ставят по собственному желанию.
я работаю на прогрессе и знаю какой там беспредел. вот только сегодня 20.02.18 г. приходили во все цеха и заставляли подписать бумагу в поддержку Кирилина. кто отказывался грозили сокращением или лишением премии. В заводе одни коррупционеры начиная с мастера и выше. как захотят так и зарплату закроют. блатным много не блатным кукиш!!!! а вы говорите что деньги начальство тырит. ВАГОНАМИ!!!!! Кидайте тапками. я сказал не всю правду.
Ему ж скоро 70. А по фотке не скажешь....
"В отчете говорится, что взрыв произошел в турбонасосе для жидкого водорода E15, вследствие чего был поврежден ракетный двигатель." Эту фразу перепечатали все агентства. Вопрос знатокам: откуда в кислород-керосиновом двигателе "турбонасос для жидкого водорода Е15"? Или это скрытая от общественности доработка Aerojet Rocketdyne?